Tuning the Scheduling of Distributed Stochastic Gradient Descent with Bayesian Optimization
نویسندگان
چکیده
We present an optimizer which uses Bayesian optimization to tune the system parameters of distributed stochastic gradient descent (SGD). Given a specific context, our goal is to quickly find efficient configurations which appropriately balance the load between the available machines to minimize the average SGD iteration time. Our experiments consider setups with over thirty parameters. Traditional Bayesian optimization, which uses a Gaussian process as its model, is not well suited to such high dimensional domains. To reduce convergence time, we exploit the available structure. We design a probabilistic model which simulates the behavior of distributed SGD and use it within Bayesian optimization. Our model can exploit many runtime measurements for inference per evaluation of the objective function. Our experiments show that our resulting optimizer converges to efficient configurations within ten iterations, the optimized configurations outperform those found by generic optimizer in thirty iterations by up to 2×.
منابع مشابه
Unbounded Bayesian Optimization via Regularization
Bayesian optimization has recently emerged as a powerful and flexible tool in machine learning for hyperparameter tuning and more generally for the efficient global optimization of expensive black box functions. The established practice requires a user-defined bounded domain, which is assumed to contain the global optimizer. However, when little is known about the probed objective function, it ...
متن کاملElastic Distributed Bayesian Collaborative Filtering
In this paper, we consider learning a Bayesian collaborative filtering model on a shared cluster of commodity machines. Two main challenges arise: (1) How can we parallelize and distribute Bayesian collaborative filtering? (2) How can our distributed inference system handle elasticity events common in a shared, resource managed cluster, including resource ramp-up, preemption, and stragglers? To...
متن کاملLearning to Learn without Gradient Descent by Gradient Descent
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-paramete...
متن کاملHAMSI: Distributed Incremental Optimization Algorithm Using Quadratic Approximations for Partially Separable Problems
We present HAMSI, a provably convergent incremental algorithm for solving large-scale partially separable optimization problems that frequently emerge in machine learning and inferential statistics. The algorithm is based on a local quadratic approximation and hence allows incorporating a second order curvature information to speed-up the convergence. Furthermore, HAMSI needs almost no tuning, ...
متن کاملOptimization of the Microgrid Scheduling with Considering Contingencies in an Uncertainty Environment
In this paper, a stochastic two-stage model is offered for optimization of the day-ahead scheduling of the microgrid. System uncertainties including dispatchable distributed generation and energy storage contingencies are considered in the stochastic model. For handling uncertainties, Monte Carlo simulation is employed for generation several scenarios and then a reduction method is used to decr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.00383 شماره
صفحات -
تاریخ انتشار 2016